UNCLASSIFIED

AD NUMBER

AD456365

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; DEC 1964.
Other requests shall be referred to Office
of Naval Research, Arlington, VA 22217.

AUTHORITY

CFSTI per ONR ltr, 11 Mar 1966

THIS PAGE IS UNCLASSIFIED




UNCLASSIFIED

L5636 |

DEFENSE DOCUMENTATION CENTER

FOR .
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

'UNCLASSIFIED




KOTICE: Wwhen govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U, S.
Government thereby incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or otber
- data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporstion, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any wvay be related
thereto.



S S e AR

. —
v s Wl N o A N

HYDRONAUTICS, incorporated
research in hydrodynamics

Research, consulfing, and advanced engineering in the fields of NAVAL
and INDUSTRIAL HYDRODYNAMICS. Offices and laboratory .in the
Washington, D. C., area: Pindell School Road, Howard County, Laurel, Md.




Best 1
Available

Copy



HYDRONAUTICS, Incorporated
- TECHNICAL REPORT 233 -6

HIGH FREQUENCY FATIGUE OF METALS
AND THEIR CAVITATION
DAMAGE RESISTANCE
By
A, Thiruvengadam
December 1964

Prepared Under

Office of MNaval Research
Zepartment of the Navy
Contract No. Nonr-3755(00) FBM
NR 06.-293




HYDRONAUTICS, Incorporated

-1

TABLE OF CONTENTS

SUMMARY .0 tiietenerueonoseonessosssasosossonsasassosanoass 1
INTRODUCTION ...vonw. e b et e eceseceesaos s se s a0 e 2
EXPERIMENTAL APPARATUS.....covevwvs ceeenenn coeas cesesana L
DESIGN OF TEST SPECIMENS ........c.ccovauvnnensn hesoenesaes 6
General ASPEeCtS....eeoeeeeeeeeenoeeeonnonoesonens Ceeseon 6
Notch Sensitivity...... Ceeoceeeneeecanteaanseenseesne R
Effect of Notch on Resonant Frequency.......eioeeeeneeee 9
EXPERIMENTAL PROCEDURE AND ACCURACY ... cvvvverveerooonaosss 9
Amplitude Measurement and Determination of
Maximum Stress.......cceveveennnns Ceerereseseseanoesea e 9
Time Measurement.......coceiieieivecnneneons conaene eeo. 10
Fabricatlon of Test Pleces........coveiviinneernnnnnce oo 11
Cooling and Environmental Control....... ceesreseserseena 12
RESULTS AND ANALYSIS....coeeesncsss Ceheceseanrenns cevoones 12
Results......... s e tecete et e s e nenb oo ses oo seosevson 12
Analysls...oeeeiervcnesocnssnnssnnss seceoseecennens voees 13
Influence of Corrosion....... B TR 17
CONCLUSIONS .t s vvevcesooosoennssosesassesosnesonsssosssassss 19

REFERENCES. .. ...t vinceeveraconson Cecenossesnenceouenceao o 20




HYDROMAUTICS, Incorporated

Plgure 1

Figure 2
Figure 3

Figure 4

Figuie 5

Figure 6

"Figure T

Figure 8

Figure 9 -

Figure 10

Figure 11

Figure 12

- I .
'LIST OF PIGURES

Block Diagram of the Magnetostriction Apparatus
Used for High Frequency Fatigue Tests

Transducer Characteristics

‘Basic Principle of High Frequency Fatigue Specimen

Design

(a) High Frequency Fatigue Specimen :
(b) Photograph of SAE 1020 Steel Fatigue Specimen

‘oalibration of Pick Up Coll for Monitoring Strains

General Arrangement of High Frequency Fatigue
Testing Apparatus

Results of High Prequency Fatigue Tests
True Stress-Strain Curves »

Comparison Between Theory and High Frequency
Fatigue Data

Effect of NaCl Concentration on the Anmplitude
Damage Rate Relationship for SAE 1020 Steel

High Frequency Corrosion Fatigue of SAE 1020 Steel

Corr.sion Fatigue of SAE 1020 Steel




HYDRONAUTICS, Incorporated

wiile -

NOTATION

.Quality factor

Natural frequency

Width of the resonance curve at half the maximum
amplitude

Wave length of sound

Veloclty of sound

Modulus of elasticlty

Density

Fatigue notch sensitivity

Ratio of unnotched fatigue strength to notched
fatigue strength

Theoretical stress concentration factor
Maximum strain

Maximum amplitude

Stress ampliiude

Strain energy

True stress

True plastic strain

Strain hardening exponent
True ultimate fracture strain

True ultimate fracture stress

Auxiliary true ultimate fracture stress




HYDRONAUTICS, Incorporated
-]l
SUMMARY

Recent experiments (1,2) have shown that the plastic strain
energy (as gilven by the area of the stress-strain diagram ob-

tained from a simple tensile test) is at present the most sig-
nificant criterion for cavitation damage resistance of metals.
Since the straln rates involved in the cavitation damage process

were several orders of magnlitude higher than that in a simple

tensile test from which the strain energy was derived, the above

result is surprising.

In order to confirm the preceding result, high frequency
fatigue tests at 14.2 kes (at the same frequency used for cavi-
tation damage tests) were conducted fc.: five metals. Recently
Morrow (3) used plastic strain energy as a criterion for finite
fatigue life and derived a relationship connecting stress to
fracture and number of cycles to fracture by making use of true
ultimate tensile strength and the strain hardening exponent.

He showed reasonable correlation with forty sets of data. Good
correlation is also obtalned with the present experiments and
Morrow's theory if the strain hardening exponent 1is reduced by
about fifteen percent for 511 the five metals. Thils result
confirme that plastic strain energy 1s a good criterion even at
high strain rates.

Another result revealed by the present study 1s the influ-
ence of corrosion., Recently (7) it was shown that cavitation
damage in a corrosive environment increases greatly whlle the

contributions from direct electrochemlcal corrosion could not
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account for thls great increase. It was postulated that the in-
creased damage must come principally from the deterioration of
the strength due to corrosion fatigue, but there were serious
doubts whether corrosion could play any significant role at
these high frequenclies. Present experiments show that fatigue
strength can be reduced significantly for SAE 1020 steel in

3 percent NaCl solution even at high frequencles, thus con-
firming the earlier speculations.

INTRODUCTION

Recent attempts to characterize the cavitation damage re-
sistance of metals by a common mechanical property have shown
that the most significant correlation could be established with
the strain energy of the material in the steady state zone
(1,2). This strain energy is given by the fracture energy per
unit volume of the metal as obtalned from the area of the stress-
straln diagram from a simple tenslle test. The cavitation dam-
age process takes place at strain rates several orders of mag-
nitude higher than the simple tensile test which gives the
fracture energy at relatively low strain rates. It seemed
surprising that the fracture energy at such low straln rates
could still represent the energy absorbing capacity of metals
under the highly transient stresses produced by the cavitation
bubble collapse. Some experimental verification was needed to
clarify the strain rate effects on fracture energy of metals in

order to explain these results.
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During these studies the thought provoking 1nvestigétions
of Morrow (3) using plastic strain energy as a criterion for
finite fatigue life came to the attention of the author.

Morrow successfully related the plastic strain energy per cycle
to the static true straln energy for forty sets cf data includ-
ing carbon steels, alloy steels, nickel based alloys, varilous
aluminum alloys, beryllium and brass., This prompted the pres-
ent investigations in which the fatigue tests at a frequency of
14 kcs were conducted following the piloneering work of Gaines (4),
Mason (5) and Neppiras (6). Morrow's analysis was extended to
the high frequency fatigue tests to see how much the straln rate
effects interact and modify the analy;i§. As a result of this
analysis, it has been found that a good correlation between the
theory and experiments can be obtained if the value of the
strain hardening exponents are reduced by 15 percent from the
static result. This shows that the straln rate effects are

relatively small when energy 1s used as a criterion for the

fracture mechanism.

Anothervimportant aspect clarified by these investigations
is the interdction of the corrosive environment on cavitation
damage. It has been observed thLat tne damage rates in a cor-

rosive environment are much higher than those observed in a

P N SR A

relatively non-corrosive environment (7). The electrochemical

corrosion estimated by four different methods could not account
for this increase in rate of damage. On the basis of these
findings, it was postulated that the hajor contribution to the
increase of rate of damage in a corrosive environment should
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come mainly from the change in the fatigue properties of the ma-
terial in that corrosive environment. However, a popular point
of view has hypotheslzed that under cavitation conditions the
surface material was being removed so rapidly that- there was in-
sufficient time for appreciable corrosive weakenling of the sur-
face. The present investigations include the test results for
one metal (1020 SAE steel) in 3 percent NaCl solution and these
results show that fatigue properties of non-resistant metal in

a corrosive environment can be drastically changed even under

very high frequencles,
EXPERIMENTAL APPARATUS

The experlimental technlque adoptedvfor the present investi-
gations consists of oscillating a metallic rod at its resonant
longitudinal frequency. This frequency was selected to be the
same as that used for previous cavitation damage tests. This
technique enables the utllization o? the magnetostriction ap-
paratus used previously for cavitation damage tests. Galnes (4)
who 1ntroduced the idea of using magnetostriction oscillators
for cavitation damage testing also suggested the use of the same
equipment for fatigue testing as well. He, in fact, carried out
a few fatigue tests in hls apparatus. However, this technlque
did not gain popularity until Mason (5) and Neppiras (6) suc-
cessfully used exponentizl and stepped veldéity transformers,
thereby making the technique more versatile, because high strains
can be produced on any metal with moderate power. A detailled
discussion of the various aspects involved 1n this method 1s

given by Neppiras (6, 8).

"-——-
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In essence, the apparatus consists of a magnetostriction
transducer, an oscillator, an amplifier, a power supply, a
wvoice coil, an oscilloscope and a frequency counter (Figure 1).
An exponential velocity transformer is attached to the magneto-
striction nickel transducer stack. The characteristics of the

entire system are shown 1n Figure 2 for three resonant frequen-

cles. The resonant frequency of the system can be varied by
varying the length of that portion of the veloclty transformer

from the nodal support to the free end by means of extension

P
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rods. The amplitude 1is monitored by a suitable voltage pick-
{ up cuil located approximately midway between the node and the
antinode. A permanent magnet is used in the ilmmediate vicin-
ity of the coll to increase the induced voltage. This induced
voltage 1s proportional to the displacement amplitude and the
instrument 1s calibrated by measuring the displacement at the

antinode with a filar microscope. The accuracy of these mea-
surements is dlscussed later.

g - R B A 5 A, A

A detailled study of the transducer system showed that the
best quality factor was obtained at 14.2 kes and hence this

ot enL o LR

frequency was selected for fatlgue tests. The quality factor
1s defined as the ratio of usable energy stored in the system

to the total input energy and is given by (9),

HH

ﬁ /3
;‘ ‘ C=

(1]

als

where fn is the resonant frequency and Af is the width of the
resonant curve at half of the maximum amplitude.
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DESIGN OF TEST. SPECIMENS

General Aspects

The basic principle of the design of the high frequency
fatigue specimens 1s as follows: When a longitudinal vibra-
tion of a half wave length of a metallic rod is produced by
means of an oséillator, the maximum strain 1s produced at the
node while the maximum velocity and dlsplacement are produced
at the antinodes at either end of the rod (Figure 3). 1If a
notch 1s produced at the node, then the strain is further ampli-
fied at the node. It 1s necessary to amplify the strains by
means of a notch because of the power limitations of the driv-
ing oscillator. There are two other unwanted side effects due
to this notch, namely: (1) the fatigue notch sensitivity and
(11) the change in resonant frequency. These two effects will

be discussed subsequently.

The main idea 1s to attach a half wave length of the me-
tallic rod to the frée end of the exponential horn and to vi-
brate 1t at the best frequency selected from considerations of
the quality factor. The half wave length can be experimentally
determined by adjusting the rod length to resonate at the best
frequency. An accurate determination of this length and fre-
quency will give the value of velocity of sound for each of the
metals tested by the relationship

A = e [2]

5
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where

A is the wave length,

£ is the resonant frequency, and

(¢

1s the velocity of sound.

The modulus of elasticilty also can be calculated after deter-

mining the density of the metals by thevceqayentional. water dis-
placement method, by

g L e e TETPY

: E = po?’ (3]

where
E is the modulus of elasticity
P is the density of the metal.

g Table .1 gives the physical properties thus determined for each
of the six metals under investigation.

Notch Sensitivity

EREROIp -

As pointed out earlier, a notch was provided at the node
to induce the required stralns. It is known that fr _.ue is
sensitive to notches depending upon the geometry of the notches.

é This effect is characterized by a factor M known as notch
sensitivity |
Kf -1

% n= -~ L4]
I K, - 1
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where

_ un-notched fatigue strength
£ notched fatigue strength

K » and

Kt = the theoretical stress concentration factor.
Experimental information on m as a 2unction of notch radius is
available for steels and aluminum alloys in References 10 and
11. The notch radlus was selected so that n would be as close
to unity as possible. The same notch radius was adopted for
both Tobin Bronze and Monel since no experimental data were
readlly avallable for these metals. Next, the theoretical
stress concentration factors for round bars may be found from
Reference 12. The dimensions of the notch selected are shown
in Figure 4(a). A photograph of the 1020 SAE steel specimen
is shown in Figure 4(b).

The stresses are calculated as follows: The maximum straln

at the node for a uniform rod in sinusoldal vibration is given
by

- lmex [5]
max A
where gmax is the maximum amplitude. The stress amplitude o
is given by
o = ¢ *E (6]
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. For the present design, the theoretical_stresa concentration
factor from Reference 12 is 1.65 and the area ratio 1s 4,
Hence the magnification factor, M is 4 times 1.65 and the stress
amplitude is given by

- 6.6 %’l E [7]

() .
a max

Effect of Notch on Resonant Frequency

Another effect of the notch is to lower the resonant fre-
quency slightly. This can be rectified by reducing the length
of the fatigue specimen after a few trial and error experiments,

. This modified length can also be predicted by an approximate
theory following Neppiras (6). However,the change in wave
length due to the notch remains within 10 percent as shown 1in
Table 1 and this can be taken into account in the calculation
of atresses.

EXPERIMENTAL PROCEDURE AND ACCURACY

Amplitude Measurement and Determination of Maximum Stress

As pointed out earlier, the maximum amplitude at the anti-
node where the fatigue specimen 1s attached 1s monitored by
means of a calibrated voice coil located as shown in Figure 1.
éince the fatigue specimen forms a half wave length, 1its ad-
dition does not change either the frequency or the calibration.
The voltage developed by the coll was of the order of 35 volts,.
corresponding to an amplitude of 2.5 x 10"® inch and hence
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. For the present design, the theoretical stress concentration
factor from Reference 12 is 1.65 and the area ratio is 4,

Hence the magnification factor, M is 4 times 1.65 and the stress
amplitude is given by

o =6.62T¢ .E [7)

Effect of Notch on Resonant Frequency

Another effect of the notch is to lower the resonant fre-
quency slightly. This can be rectified by reducing the length
of the fatigue specimen after a few trial and error experiments.

. This modified length can also be predicted by an approximate
theory following Neppiras (6). However,the change in wave
length due to the notch remains within 10 percent as shown in
Table 1 and this can be taken into account in the calculation
of stresses,

EXPERIMENTAL PROCEDURE AND ACCURACY

égplitude Measurement and Determination of Maximum Stress

As pointed out earlier, the maximum amplitude at the anti-

node where the fatigue specimen 1s.attached is monitored by
means of a calibrated voice coil located as shown in Figure 1.
Since the fatigue specimen forms a half wave length, its ad-
dition does not change either the frequency or the calibration.
The voltage developed by the coll was of the order of 35 volts,
corresponding to an amplitude of 2.5 X 10°® inch and hence
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.maintain constant amplitude. ( An automatic amplitude control has
been designed for future studiés) The determination of this -
fracture time is no problem especially above ten million cycles
since it would take about 12 minutes to reach this value. It
would take 20 hours to reach a billion cycles and this time is
designated as "run-out" time. (Run-out i1s defined as the number
of cycles at which the test. is discontinuedreven if the specimen
does not fracture). | -

Fabrication of Test Pleces

Figure 4(a) shows the dimensional tolerances required for
the fabrication of the specimens. The specimens were ground to
the final dimensions from a 3/4 inch round bar stock for all
the five metals except for SAE 1020 steel. The specimens were
in the annealed condition and of the same heat as was used for
previous cavitation damage tests and stress-strain measurements.
Cavitation damage specimens and tenslle test specimens were pre-
pared from the same bar stock of the metals. The fatigue speci-
mens for SAE 1020 steel were prepared from 1/2 inch round bar |
stock; however, the cavitation damage and tensile test data
were not available for the same heat.

As soon as these specimens were machined they were coated
with a corrosion protective film * and stored. This film was
removed with methanol before each test. For this initlal limited

program, only ten specimens were tested for each metal except
for SAE 1020 steel for which about 30 specimens were used.

* Zip Spray No. 2 by Zip Abrasive Company of Cleveland, Ohlo.
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Cooling and Environmental Control

Without outside coolling, the fatigue apecimehs become ex-
ceesively hot near the node due to the high dynamic strains.
To dvoid this unwanted heating, a constant temperature, close
to atmospheric temperature, was maintained by immersing the
specimen in & constant temperature bath. This bath provided
simultaneously the corrosive or non-corrosive environment as
required. For the present experiments, the fatigue specimens
were immersed in a beaker full of eilther distilled water or
methanol, which was kept at constant temperature tQOF, by means
of another cooling jacket through which tap water was circula-
ted. For one set of experiments with SAE 1020 steel, 3 percent
NaCl solution was used as the environmental bath to provide the

corrosive environment. This arrangement is shown in Figure 6,
RESULTS AND ANALYSIS

Results
Figure 7 shows the results of these vests for five metals,
namely:
(a) 1100-F Aluminum
(p) 2024-T4 Aluminum
(¢c) Tobin Bronze
(d) Monel
(e) 316 sStainless Steel,

The dark circles show the results of tests in methanol, whereas'
all the other tests were conducted in distilled water. These

results show the negligible effect of corrosion by distilled water.
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Analysis

As pointed out in the introduction, the main aim of these
investigations is to obtaln a quantitative insight into the
strain rate effects on the fracture energy of these metals. The
following analysis, originally due to Morrow (3), has been quite
useful for this purpose.

Brief review of Morrow's Theory: The following important

assumptions are made 1n this theory.

1, Plastic strain energy 1s a criterion for finite
fatigue 1life,

2. The total plastic strailn energy to fracture in-
creases as the alternating stress iy reduced in
a completely reversed fatigue test. Specifically,
it has been assumed that this quantity 1s inversely
proportional to the fourth power of the alternating

stress.

3. The plastic straln energy per cycle can be related

to the static true stress-strain curve.

The theoretical Justifications, the experimental verification
and the limitations of these assumptions are dlscussed in detail
by Morrow in his original paper. The derivation of the essential
equations will be touched upon only briefly in this report.
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The plastic strain energy up to fracture per unit volume
is given by

. )
f
Se =f cdep [8]
0
and
n
o= e (9]

where o 18 the true stress corresponding to a true plastic
strain of € (see Figure 8), and n is the strailn hardening
exponent.

Now .

e \D
o= of'(gg) [10]

.

f

where of' is the true fracture stress corresponding to the frac-
ture strain ef. In some materials, deviation from linearity in
a log-log plot of true stress versus true straln occurs past
necking (probably due to the triaxial stresses present in the
necked region)., For this reason, cf' has been defined as the
stress obtained by extrapolating the straight line region as
shown in Figure 8(b) to the strain at fracture. The experimen-
tally measured value would be Ope

Substituting Equation [1Q0] in [8] and integrating gives

e“T+n % ©¢ (11]
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. Similarly the plastic strain energy, or the work done per cycle
Aw 18
¢
P
Aw = 2 cde
p
=—2— o A¢ [12]

l+n a P

Assuming that Aw remains constant for the entire test at a given

streas level, the work done up to fracture wf is given by

The dependence of wr on °a was evaluated by a combination of a
dimensional analysis due to Liu (13) and the Griffith crack
theory. There 18 a region of plastic deformation around each

crack. Assuming these regions are geometrically similar, the
stored plastic energy will depend upon the square of the crack

VNSRS et

length.

Thus

e =(§})' [14]

Invoking Griffith's theory,

Lo® = constant - [15]
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and hence
-8
%f— = g-) [ 16]

Combining Equations [14] and [16], one gets

Py (s

Hence

-3 ‘
o . |w K
2 =(~’1) [18]

cf Se

Combining Equations [11], [12], [13] and [18], one obtains

2N, (=, =1 (19]
f(of) ef
1
Ae °a n
‘e"fg =(3;',) [ 20]

Now from [19) and [20]

1 + 565n
g = of'(eNf) [21]
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. In logarithmic form

n
log 0'a = lpg Uf’ "1+ 5n log (2Nf) [ 22]

Morrow found this analysis for completely reversed, constant
amplitude unlaxial fatigue to agree with the trends in forty sets
of fatigue data of metals.

The above analysis was used to check the experimental data
of the present high frequency fatligue tests. The values of of'
and n as obtained from true stress-strain diagrams for these
five metals are shown in Table 2. It was found that Equation [22]
fits the experimental datgnfor all of the five metals tested, if
the value of n ured in Equation [22] 1s fifteen percent less than
the actual values as obtained from tests. A comparison between
the curves predicted from the above analysis using 85 percent‘of
the value of n and the experimental data are shown in Figure 9.
This agreement shows that the high straln rates involved in the
present testing method has not substantially changed the plastic
energy required to fracture the metal in fatigue., This conclu-
sion is very significant 1n'exp1a1ning why the strain energy
glves the most significant correlation with cavitation damage

resistance,.

Influence of Corrosion

. One of the serious limitations to the above analysis is the
influence of corrosive environment., It 1s known that cavitation

damage 18 greatly increased in a corrosive liquid. For a typical




-

HYDRONAUTICS, Incorporated

-18-

case of NaCl solutions and SAE 1020 steel, this relationship is
reproduced from Reference 7 in Figure 10. It was pointed out
in that reference that the estimated electrochemical corrosion
could not acecount for the large increase in damage and there-
fore the fatigue strength of the metal must have deteriorated
due to corrosion. There were some doubts as to whether the
fatigue strength could be affected so greatly under such high
frequencies. To clarify this point, a few experiments were
conducted .using SAE 1020 steel. Figure 11 shows the results
with methanol, distilled water, and 3 percent Nall solution as
1liquid environments. One can easily notice the detrimental ef-
| fect of corrosion on the fatigue strength of steel even at this
‘§ high frequency.

An analysis similar to the one above gives the following
equation for this steel in a non-corrosive environment.

0.07 .
“T® 5 x 0.07 198 2N

log o, = log 1.25 x 10 (23]
The effect of corrosion can be represented quantitatively by
means of the following equation.

log 2N, - CN [ 24]

log 0y = log or' - £ s

_-2._._.
1l + 5n
where C 1s an empirical corrosion fatigue factor. For the pres-
ent results, n turns out to be 4 x 10"*° as shown in Figure 12,
It 18 belleved that a deeper understanding of this corrosion
“factor C would eventually lead to a quantitative represeniation
of corrosive interaction in cavitation damage.
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CONCLUSIONS

Based on the results of these investigations, the follow-
ing conclusions may be stated.

1. The plastic strain energy correlation found to be suc-
cessful to represent cavitation damage and low frequency fatigue,
can equally be used for correlating high frequency data. This
result shows that strain rate effects may‘not introduce devia-
tions greater than 10 to 20 percent in the strain hardening ex-
ponent. This result is significant in explaining the correla-
tions obtained with cavitation damage (1, 2).

2. Fatigue strength of non-resistant metals in a corrosive
environment can be significantly changed even under high fre-
quencies., This tends to explain the earlier findings with regard

to the very high increase in cavitation erosion in a corrosive
liquid (7).
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TABLE 2

The Values Of af' And n _For The Five Metals Analyzed.. . ____

Metal o, n 85% n gtriin Energy
Kips o n Kips
316 Stainless Steel | 120 0.10 | 0.085 35
Monel 110 0.08 0.068 24
Tobin Bronze 83 0.10 | 0.85 17
2024 -T4 Aluminum 81 0.13 40.11 13
1100-F Aluminum 26 0.07 0.06 '
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(b) NOTCHED HALF-WAVE LENGTH SPECIMEN

FIGURE 3 - BASIC PRINCIPLE OF HIGH FREQUENCY FATIGUE SPECIMEN DESIGN
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FIGURE 4 (b)-PHOTOGRAPH OF SAE 1020 STEEL FATIGUE SPECIMEN
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(a) OVERALL VIEW

O e a e

AT

(b) CLOSE UP OF SPECIMEN AND COOLING BATH

FIGURE 6 -GENERAL ARRANGEMENT OF HIGH FREQUENCY FATIGUE TESTING
APPARATUS
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RATE OF WEIGHT LOSS, So;

10-! 7

10
s} MATERIAL: SAE 1020 STEEL

FREQUENCY: I8 KCS
TEMPERATURE: 80° F

er OIAMETER OF
SPECIMEN: 5/8 INCH

AFTER S. WARING ET AL (7)

3%,6%,9% NaCl SOLUTION //

Z

° e /] /

| )/

’ 05% m/ /

0.1% NaCl
2 /
DISTILLED WATER /
1072 ' :
- 2 4 6 8 I 2
10

DOUBLE AMPLITUDE, MILS (1G> INCH)

FIGURE 10 ~EFFECT OF NaCl CONCENTRATION ON THE AMPLITUDE
VERSUS DAMAGE RATE RELATIONSHIP FOR SAE 1020 STEEL
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